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SUMMARY

High performance parallel computers offer the promise of sufficient computational power to enable the
routine use of large scale simulations during the process of engineering design. With this in mind, and
with particular reference to the aerospace industry, this paper describes developments that have been
undertaken to provide parallel implementations of algorithms for simulation, mesh generation and
visualization. Designers are also demanding that software should be easy to use and, here, this
requirement is addressed by embedding the algorithms within a convenient computer environment. This
environment allows for the integration of arbitrary application software, which enables the development
of a multidisciplinary engineering analysis capability within a unified computational framework. Copy-
right © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational methods applied within an engineering design environment must be easy to
use, enable rapid problem set-up, be fast and efficient and provide consistent and accurate
results. These are major challenges, particularly in the aerospace industry, where the simula-
tions which are attempted are generally large computationally and the tasks involved in data
preparation and analysis are complicated and time consuming [1].

With the advent of fully automatic mesh generators [2,3], unstructured mesh methods have
proved particularly attractive for addressing the problems associated with pre-processing for
complex aerospace configurations. However, to meet the simulation requirements in areas such
as aerodynamics and electromagnetics, the execution time requirements of unstructured mesh
solvers need to be reduced. This is particularly important as the problem sizes increase and the
emphasis moves towards computationally demanding multidisciplinary analysis. When the
generation of very large grids is attempted with current mesh generators, it is found that major
memory demands are placed on the computer system. Ways need to be determined to reduce
these memory demands, with the intention of enabling large grids to be generated with a
moderate computational capability. A further requirement is for the introduction of new
methods that will allow the analyst to quickly view results computed on very large grids.
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In this paper, we illustrate an approach that addresses these problems by utilizing high
performance parallel computing. Standard message passing libraries are used to produce
parallel implementations of an unstructured mesh generator, of aerodynamic and electromag-
netic solvers and of a visualization capability. These parallel codes are developed for use on a
variety of parallel platforms, such as distributed workstations, shared memory computers or
machines such as the CRAY T3D. To enable the advocated approach to be readily applied
within an industrial context, the procedures which have been developed have been included
within a parallel simulation user environment (PSUE) [4,5]. The PSUE is an enhanced
graphical user capability for complex and multiple problem definition, using unstructured
meshes, and provides access to all the tools required for pre- and post-processing. This
environment is not application specific and arbitrary simulation software can be readily
integrated, thus enabling multidisciplinary analyses. These features ensure that the PSUE has
the potential to provide an all encompassing environment for computational engineering.

2. PARALLEL UNSTRUCTURED MESH SOLUTION ALGORITHMS

The solution of real-world aerospace engineering problems frequently requires the use of very
large meshes [6]. For example, the computation of steady turbulent viscous flow over a
complete aircraft will require a minimum of 10 to 20 million tetrahedral elements, while 100
million elements would currently be a typical minimum for a practically interesting time
domain electromagnetic wave scattering simulation about the same configuration. Parallel
computing platforms, with their current performance characteristics and their proposed future
enhancements, offer the possibility of obtaining the solution to such large problems in realistic
elapsed time scales. However, the simulation software has to be suitably parallelized before this
power can be accessed.

2.1. Serial unstructured mesh solution algorithms

For computational aerodynamic simulations, the governing equations are taken to be the
Favre averaged Navier–Stokes equations for three dimensional compressible flow, with the
addition of a k–v two equation turbulence model [7]. The resulting equations are discretized
in space using a Galerkin approximate variational formulation [8], with a piecewise linear
representation for the solution over a general tetrahedral mesh. In the computational imple-
mentation [9], the unstructured mesh is represented in terms of an edge based data structure,
as this minimizes the memory requirements of the algorithm [10]. The steady state solution is
obtained by using an explicit multistage procedure to advance the solution in time, with added
acceleration devices[11]. Stabilization is achieved by the addition of artificial dissipation,
constructed in the JST manner along each edge of the mesh [12].

Problems in the area of computational electromagnetics are governed by Maxwell’s equa-
tions. Although the solution of these equations is often approached in the frequency domain
[13], it is the time domain method of solution that is adopted here [14]. This approach means
that the governing equations can be expressed in a conservative form and that it is then
possible to apply, with minimum modification, solution algorithms that are very similar to
those applied to the simulation of aerodynamic flows. An edge based implementation of a
Galerkin approximate variational procedure is applied and the solution is advanced in time by
a forward difference explicit method. Stabilization is achieved by the use of a Lax–Wendroff
flux function on each edge [15].
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2.2. Domain decomposition

The first step in achieving a parallel implementation of these solution algorithms is the
decomposition of the mesh which is to be employed into a number of sub-domains. For
present purposes, the computational domain is represented in terms of an unstructured mesh
of linear tetrahedral elements and such a mesh can be decomposed by recursive spectral
bisection (RSB) [16]. The implementation adopted provides a colouring of the nodes in the
mesh into an appropriate number of sub-domain groups and generally produces well-balanced
sub-domains, with low communication requirements. This should result in good parallel
performance of any parallel solution algorithm. However, the implementation of the method
is expensive in terms of computer memory demands, e.g. a CRAY YMP-EL with 256 MWords
of main memory can be used to decompose meshes consisting of less than 8 million elements.
In an attempt to increase the size of mesh that can be handled, an alternative direct
partitioning algorithm based upon bandwidth minimization [17] has also been investigated. In
this approach, a connection matrix is constructed from the node association information
defining the unstructured mesh. This matrix indicates the sparsity distribution of any global
matrix that would be formed during an unstructured mesh assembly process. A standard
bandwidth minimization is employed on the nodal numbering. The nodes are coloured
sequentially, with the sub-division between the colours being determined by the accumulated
number of connected edges. This approach requires less memory than RSB and can be used to
decompose meshes of up to sixteen million elements on a CRAY YMP-EL with 256 MWords
of main memory. When the mesh has been sub-divided, communication data structures are
defined which enable inter-domain transfer of information.

2.3. Parallelization philosophy

In the sequential version of the solution algorithms, with the edge data structure, the main
computational work is in the form of GATHER and SCATTER operations between nodes
and edges. Nodal quantities are accumulated by looping over all the edges within the mesh.

In the parallel implementation of the algorithms, computations within the sub-domains are
performed on different processors of the computer platform and data is transferred between
processors by using standard message passing libraries, such as MPI or PVM. For these
explicit finite element based solution procedures, a high level of data abstraction can be
achieved and this is preferable to a low level of parallelization, where it is necessary to treat
parallelization at an algorithm level. The approach requires the identification of the different
types of data and data structures involved in the formulation. Working with these abstractions,
and identifying the parts of the procedure where communication takes place, it is possible to
build the necessary data structure for communication and use it for all codes based on similar
sequential data structures [18].

For the parallel algorithms, with the sub-divided mesh, edges are regarded as being owned
by only one domain and are not duplicated. Interior edges and communication edges are
defined for a typical sub-domain, I. An interior edge for sub-domain I is an edge for which
both nodes belong to I. As data locality is achieved during the GATHER process from points
to edges, interior edges require no communication. Communication edges are edges for which
one node belongs to domain I and the other belongs to domain J. This edge is allocated to
sub-domain I if J\I. Communication edges will contribute to the accumulation of contribu-
tions to nodes in J and, in this case, communication between processors takes place. In a
similar way, points are owned by one domain, but duplication is required to enforce data
locality. This leads to the requirement for a halo of dummy points. Interior points and
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communication points are defined for sub-domain I. Interior points are those belonging to I
which are such that all surrounding edges also belong to I. As data locality is achieved during
the SCATTER process from edges to points, these points require no communication. Commu-
nication points are those that do not belong to I, but at least one surrounding edge belongs to
I. For these points, communication is required. Figure 1 shows, in schematic form, the
ownership of nodes and edges at a sub-domain interface.

At the start of a time step, the communication nodes obtain contributions from the
communication edges. These partially updated interface nodal contributions are then broad-
cast to the corresponding nodes in the neighbouring sub-domains. Following a loop over the
interior edges, the broadcast information is received and all nodal values are subsequently
updated. The sending of the updated values back to the communication nodes completes a
time step of the procedure. The procedure is implemented in such a way that it allows
computation and communication to take place concurrently. Elements and nodes are locally
renumbered within the sub-domains, to help minimize memory cache access times.

This philosophy was initially applied in the parallelization of the computer code for the
solution of the compressible Navier–Stokes equations [9,19] and the concept is sufficiently
general to enable the same procedures to be directly applied to the code which simulates the
transient electromagnetic wave scattering by aerodynamic configurations [20]. An important
requirement has been that of ensuring that the procedures employed enable portability across
different computers, with the result that the codes are not optimized for performance on a
particular platform.

3. UNSTRUCTURED MESH GENERATION

During the last decade, there have been major developments in unstructured mesh generation
algorithms, both in terms of speed of generation and mesh quality. Today, meshes of 2 to 3
million elements may be routinely generated on workstations and on PCs, using Delaunay
based procedures [2,3]. However, the computer memory demands of these algorithms mean
that it is necessary to devise new procedures, if meshes consisting of up to, and beyond, 100
million elements are to be routinely generated. One method of accomplishing this is to
incorporate the unstructured mesh generation process within a parallel framework.

Figure 1. Ownership of nodes and edges at the interface between two sub domains.
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Figure 2. Construction of the surface grids for an example in which four sub-domains are employed.

The approach adopted [21] employs a geometrical decomposition of the domain, followed by
the use of different computer processors to generate the meshes within each sub-domain. As a
first step, a surface triangulation of the boundary of the computational domain is produced
and a volume mesh is created by connecting the corresponding boundary nodes by a Delaunay
algorithm. A modified greedy algorithm is employed to produce a decomposition of this initial
discretization into n sub-domains, according to an equal volume criterion, where the value of
n can either be selected by the user or determined by the resources available on the parallel
computer platform. The boundary surfaces between the sub-domains are identified and a
smooth triangulation of these surfaces is achieved. This step, which is performed in parallel, is
the most challenging within the procedure, for given a surface consisting of planar faces from
the initial tetrahedra, a smooth triangulation with mesh point density consistent with the
defined mesh control function has to be generated. The approach that is followed [22] allows
for point insertion, edge swapping and smoothing to be applied, as illustrated in Figure 2.

A master processor distributes the n sub-domains to the m worker processors, utilizing
message passing in the form of MPI, and meshes are generated on the worker processors using
a sequential Delaunay algorithm. When the mesh generation is complete, the sub-domain
meshes can be distributed on to different platforms, or collected together on the master. If the
number of sub-domains, n, is the same as the number of workers, m, this forms a static load
balancing implementation and the efficiency is effectively governed by the length of time it
takes to mesh the largest sub-division. However, if n\m, this is termed dynamic load
balancing and this can be a more efficient process computationally. It should be observed that
this approach is applicable to both shared and distributed memory machines, so that meshes
of arbitrary size can be generated on computers with very modest memory. Using this method,
large meshes have been generated for use in electromagnetic wave scattering simulations. Table
I shows the data profile of a mesh of 12 million elements that has been generated in this
fashion. Following generation, the elements need to be redistributed to improve the balancing
between the sub-domains, before the mesh can be used in practice.
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4. VISUALIZATION

Visualization of key data can prove to be a major problem when a simulation is attempted on
a very large mesh. To illustrate the difficulties that may be encountered, consider the mesh
generation procedure. This can be regarded as being based upon three distinct phases, which
may be termed specify, generate and evaluate. In the specify phase, the user interacts with a
geometry and specifies all the required input data. In our implementation, this phase utilizes
advanced algorithms embedded within an easy-to-use graphics user interface (GUI). When all
the required input parameters are specified, the mesh is generated using relatively high
compute intensive algorithms with little user interaction. The evaluate phase involves the user
in evaluating the suitability and quality of the generated mesh. This is often user interactive
intensive, using statistical analysis of mesh quality and visualization of regions in the domain
where poorly formed elements may reside. Again, in the evaluate phase, the role of a GUI is
important. With current mesh generation algorithms, it is often found that the time required
for the generate phase is small compared with the time spent in the specify and evaluate
phases.

Typically, using a Delaunay generator, an unstructured mesh of 2 million elements is
generated in less than 30 min on a modest workstation. However, the specify and evaluate
phases may take several hours, or even several days, depending upon the complexity of the
geometry. Experience suggests that the key to effective interaction at the specify and evaluate
phases is the response time for the manipulation of the data on the screen of the workstation.
For small data sets, it is easy and efficient to specify the data necessary to control the density
of the mesh in different regions of the domain and this can normally be accomplished in a few
minutes. The problem arises with large data sets, when the interaction time between the user
and the computer graphics is excessive. It can be difficult to move objects on the screen and
the user and the graphics become disconnected, causing frustration and very inefficient
working. A similar situation arises in the evaluate phase. With large data sets, it becomes
difficult to visualize aspects of mesh quality and to interact with the generated mesh. This type
of problem is also encountered once solution data has been generated, when it is critical to be
able to extract key variables and present the data in a meaningful way. To remove such

Table I. The characteristics of a grid of 12 million elements generated in parallel and the effect of
redistributing the elements
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bottlenecks, special algorithms for visualization on parallel computer platforms need to be
developed.

In our work, the basic approach adopted for parallel visualization is based upon the
master–slave concept. Communication between the master and the slaves is performed using
an in-house communications library that utilizes high-speed sockets [23]. MPI is deemed to be
inappropriate here, as it does not have facilities for real-time systems. The master is typically
executed on a graphics workstation, while the slaves are executed on either a network of
workstations, on a parallel machine or on a combination of both. All rendering on the screen
is performed solely by the master, which only stores the primitives that are to be drawn and
does not store meshes. To maximize communication and computation, multithreading is used.
The main thread deals with the interaction with the user, whilst the slaves are started and
stopped as and when data is ready to be received from the master. This allows the user to
continue to manipulate data on the screen in parallel with the arrival of new data. The
data is spread across the slaves, which perform no rendering. The domain decomposi-
tion is achieved using a greedy algorithm, which is found to provide an adequate data
decomposition.

5. THE PARALLEL SIMULATION USER ENVIRONMENT (PSUE)

The PSUE is designed as a software environment which incorporates the tools required for
pre- and post-processing of engineering simulations and which allows the integration of
arbitrary applications software, to capitalize on these tools [4,5]. The environment provides a
framework for reducing the time required for problem definition and for post-processing,
whilst the unified environment is ideal for multidisciplinary design applications, as the data is
handled in one consistent format. The PSUE is designed to hide many aspects of computa-
tional engineering which are not of prime interest or relevance to the engineer, e.g. the
setting-up and subsequent execution of an application on a parallel platform. A major design
philosophy of the PSUE is that modules are either owned by the PSUE or by the user.
Modules owned by the PSUE are termed generic modules and are closely coupled, through
common data structures, into the environment. Modules owned by the user are integrated
into the PSUE through pre-defined format data channels, which take the form of file, pipe or
socket transfer. This framework allows users to capitalize on the generic functionality of the
PSUE, while enabling them to also use their own modules. A guiding principle throughout
the development of the PSUE has been that the efficient performance of the system on large
unstructured grids is of paramount importance. Hence, particular attention has been given to
memory management, efficient algorithms and the effective use of high performance comput-
ing and networking. The ability to conduct parallel processing from inside the environment
was deemed to be essential.

5.1. Functionality of the PSUE

As the PSUE is a framework within which arbitrary modules can be integrated, it is
inappropriate to be too prescriptive in terms of its functionality. However, in line with the
design philosophy, the PSUE contains generic modules that provide a set of working tools. A
general schematic of these modules is given in Figure 3.

The primary role of the workstation interface is to provide visual validation of each user
action and to guide the user through the system. The interface is based upon X, OSF/Motif

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 159–173 (1999)



K. MORGAN ET AL.166

Figure 3. A general schematic of the modules available within the PSUE.

and OpenGL library routines [24–26] for UNIX based platforms. Basic geometry creation
and manipulation can be performed and this enables the building of outer boundaries
for computational domains and the prescription of the data necessary to control the grid
density.

The time required to prepare geometries for mesh generation is presently a major concern
within industrial groups. It is frequently the case that the format of geometries inside CAD
packages does not conform to the format required for mesh generation. Holes, gaps,
overlaps, intersecting surfaces are issues that must be addressed before a grid can be
generated on a surface. It should be noted that, in this context, the issue of the validity of a
geometry is not a well-defined concept. For example, a detailed geometrical model of the
fuselage of an aircraft will include a valid gap around a door, but such detail may not be
required for a typical engineering simulation. However, it is a valid geometrical feature, but
a feature that would inevitably cause a problem within the grid generation procedure. This
case is to be contrasted with that of two surfaces that meet along an edge and leave a hole
or a gap. In this case, the geometry is invalid. Both these cases require the use of geometrical
tools to prepare the geometry for grid generation. Such tools must be easy to use and
capable of dealing with the wide variety of problems which can be encountered. The PSUE
has the capability to detect topological and geometrical errors such as edges lying out of
faces or gaps between two faces. A list of inconsistencies is provided to the user and, using
repairing functionality, the model can be interactively modified in order to repair it prior to
grid generation.

The grid generation modules available within the PSUE include the ability to generate 2D
planar grids, surface grids of triangles and volume grids of tetrahedra [2,3]. The grids are
linked to grid quality analysis modules that provide statistical data, including histograms.
Mesh cosmetic operations, such as edge and face swapping, may be applied to improve the
quality of a mesh after it has been generated. When a solution has been computed on a
given mesh, a mesh adaptation procedure is provided which is capable of selectively perform-
ing h-refinement of the mesh, according to some adaptation or error indicator [27].

A key feature of the PSUE is the provision of a set of computing tools. The parallel tool
functionality provides a framework for preparing and executing applications on a variety of
computer platforms. The basic philosophy is that the PSUE may be running on a worksta-
tion of modest computational capability. However, there are tasks, within the pre- and
post-processing and in application execution, which require more computer power. To

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 159–173 (1999)



PARALLEL COMPUTING FOR AEROSPACE ENGINEERING 167

Figure 4. The computer platform options available within the PSUE.

alleviate this potential bottleneck, the user has, at the execution of any process, the option of
defining the computer platform appropriate to the required task. Figure 4 shows, in schematic
form, these basic options. The remote execution of any task within a generic module of the
PSUE is automatic. The data that is required is automatically transmitted to the external
computer platform, is executed and appropriate data transmitted back to the host.

The parallel tools module provides users with the flexibility to employ, through a system
call, one of the domain decomposition strategies. The environment provides a basis for job
preparation and execution and the ability to use XPVM, PVM, MPI has been incorporated.
The PSUE offers two options for establishing a parallel platform. These are setup and default
setup. Under setup, four options are available: single processor, multi-processor, distributed
networks and remote platform. Single processor, multi-processor and distributed networks are
constructed using XPVM. Remote platform is used, for example, with an ftp link integrated
into the PSUE. Data files and analysis modules are transferred to any remote machine where
upon compilation and execution can be performed. Applications can be executed once the user
has defined the network setup and the correct message passing environment. Monitoring the
performance of a parallel code is a significant task when load balancing and efficiency are the
prime targets of the software developer. The PSUE offers two performance monitoring
facilities as generic, namely XPVM and PARAGRAPH. However, any performance monitor-
ing tool can be added through the proper PSUE script file. The functionality offered by the
parallel computer module is illustrated schematically in Figure 5.

At present, the comprehensive interrogation of analysis data is performed by external
packages, such as AVS, Ensight, etc. These external packages are initiated from the PSUE and
data transfer is in the form of temporary files. For packages that allow automated startup,
such as AVS, this can be utilized so that the user may immediately visualize the data by a
minimal number of key inputs. For other packages, temporary files are stored and the user

Figure 5. The functionalitv provided by the parallel tools module.
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Figure 6. Mechanics of data transfer between the PSUE and an external application.

notified of their type and location. If users require their own analysis package to be coupled
into the PSUE, then data may be passed using pipes and sockets as well as the temporary file
system. In the case of a coupled package, the user is responsible for any automated startup.
The parallel visualization capability has been incorporated into the PSUE so that, for large
datasets, users are able to manipulate images using parallel processing and thus ensure effective
interaction with data.

5.2. Integration of applications into the PSUE

The PSUE has an architecture that enables arbitrary applications to be coupled into the
environment. User software for engineering simulation, CAD repair, grid generation, etc. can
be directly coupled into the PSUE as software applications. Applications within the PSUE are
customized using an application definition data file. In this file, the user specifies the location
of the application module. In the case of a large number of applications being requested, the
PSUE automatically sets up a scrolling window containing the required application widgets.
The user is responsible for the application window. Data transfer for coupled applications may
be achieved by using file, pipe and socket transfer. On requesting a coupled application, a
dialog requests a decision from the user as to which type of transfer to make. This is known
as the PSUE handshake. When file transfer is selected, the dialog contains a series of file types
with varying attributes and structure. On selection of one of these file types, the PSUE
produces a file and informs the user of its location. The application itself is then executed and
the user is responsible for loading the relevant file. On return to the PSUE, a file saved in the
application may be loaded back into the PSUE. When pipe transfer is selected, the application
itself is executed and the immediate standard input is the actual data. This requires the
application to accept this data as standard input before it can continue. For a socket transfer,
the host must be able to set up the socket connection. Changing one system file on the host
is all that is required. On selection, the application can receive or send data via the socket at
any time. The data types and structures that are used in the file transfer are the same as the
types and structures of the data sent by the pipe and socket transfer methods. These options
are illustrated in Figure 6.

6. APPLICATIONS

The software for simulating compressible aerodynamic flows and electromagnetic wave
propagation has been integrated into the PSUE. The integration was performed with data
transfer utilizing a pipe connection. The geometry builder within the PSUE is used to build an
outer boundary for the relevant configurations. Inside the PSUE, the mesh is generated, all
flow parameters and boundary conditions are defined and the mesh is partitioned. Boundary
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Table II. Performance data for the parallel inviscid flow algorithm on the
Silicon Graphics Challenge

RTNoP RSU

60001 1
2500 2.42
10094 5.9

5658 10.6

conditions are defined using the generic boundary condition editor. This enables the user to
pick curves, surfaces and volume domains and, by using an existing database of boundary
conditions or by allowing the user to define new conditions, to set the appropriate conditions.
The user specifies the code to be executed in a script file and then a push button for that
application automatically appears in the application window within the PSUE. Data, such as
the grid and the boundary conditions, is then passed to the application through the data
transfer interface.

A number of examples have been simulated to determine the level of computational
performance that can be achieved by the resulting procedures.

6.1. Steady in6iscid flow o6er an aircraft configuration

For the analysis of a steady inviscid flow over a wing, body, pylon, nacelle configuration,
the grid employed consists of 7335316 tetrahedral elements. Table II shows the performance
of the parallel flow solver on an eight processor Silicon Graphics Challenge computer. Here,
NoP denotes the number of processors employed, RT denotes the run time in minutes required
to perform 1000 time steps and RSU denotes the relative speed-up obtained. It is clear that the
strategy adopted to renumber the nodes and elements within the different partitions is effective
and super-linear speed-up is achieved, because of an effective use of the cache memory.

Table III indicates the performance achieved when the solution of the same problem is
attempted on a CRAY T3D. Here MinEd, MaxEd, MinPo and MaxPo denote, respectively,
the minimum and maximum number of edges and points in any domain. For a mesh of this
size, the limited memory available on a single node prevents a computation on one processor.
Hence, the performance data is compared to a four processor computation and it is seen that,
with 256 processors, an effective speed-up of 185 can be claimed.

The number of time steps required to converge the solution on such a grid is around 2000
which means that the solution is computed on the CRAY T3D in around 30 min, using 256
processors.

Table III. Performance data for the parallel inviscid flow algorithm on CRAY
T3D

MinEd MaxEd MinPo MoxPo RTNoP RSU

1.0065070 130665 231484 465469 7714
37 35733 262244 827 345230 4598 1.88

114 139 125 04016 16 631 19 674 159 4.09
32 55 144 64 926 8316 10 609 92 7.07
64 14.77445930415833 47526 760

24.07273239207916 98012 826128
6189256 46.4214182210408762
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Table IV. Parallel performance statistics for the turbulent flow code

NoP MinEd MaxEd TNIE RT RSU

498 389 498 4094 3933 1545 1.0
249 179 249 205 30938 776 2.0

16 124 550 124 607 2578 404 3.84
62 307 62 164 2007 200 7.7332

6.2. Steady turbulent flow o6er a wing/body configuration

The generation of meshes that are appropriate for viscous flow simulations over general
aerodynamic configurations is a non-trivial task which is currently receiving considerable
attention [28]. With our current capability, a mesh of 244334 nodes and 1687850 elements has
been generated for a wing/body configuration and a flow simulation is performed at a free
stream Mach number of 0.8, a Reynolds number of 40 million and an angle of attack of 0.5
degrees. The grid partitioning statistics, together with the performance of the flow algorithm
on the CRAY T3D, are presented in Table IV. Here, TNIE denotes the total number of
communication edges in the mesh.

6.3. Electromagnetic scattering by an aircraft configuration

The first example in this area corresponds to the simulation of scattering of a plane
electromagnetic wave by a perfectly conducting complete aircraft. The wave frequency is 100
MHz, the wavelength l=3 m and the length of the aircraft is 6l. The mesh used for the
calculation contains 2242682 elements and this is decomposed into partitions using the RSB
approach and the bandwidth minimization algorithm. Table V shows the performance of the
parallel algorithm on the meshes decomposed using RSB, whilst Table VI demonstrate the
performance of the parallel algorithm on the meshes decomposed using the bandwidth
minimization approach.

It can be observed that the performance figures are not as good as those obtained for the
aerodynamic simulations. This is because the electromagnetic algorithm involves less computa-
tion per time step and, hence, for a mesh of this size, communication plays a more important
role. It is also interesting to note that, on this evidence, using the RSB or the bandwidth
minimization algorithm for domain decomposition produces little difference in the perfor-
mance levels that can be achieved.

Table V. Performance data for the parallel electromagnetic algorithm on
CRAY T3D

MinEd RSURTNoP MaxPoMinPoMaxEd

4 549 429 569 181 77 704 451683 761 1.0
8 2.0271 198 294 234 38 852 45 304 2232

16 132 911 148 268 19 426 23 565 1174 3.8
32 64 814 76 339 9713 12 811 613 7.4

38 44132 16664 3426724 13.24857
14 971 25.7128 1763833242920 659

33.21362179121410 7017142256

The decomposition was performed by the RSB approach.
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Table VI. Performance data for the parallel electromagnetic algorithm on
CRAY T3D

NoP RTMaxPoMinPoMaxEdMinEd RSU

560 666 560 673 1.082 018 82 567 51004
1.9263443 24540 959280 342280 3148
4.3140 120 140 176 21 058 22 985 119816
7.769 974 70 093 10 753 13 812 65932

34 819 13.73719182557735 05264
17 082 17 531128 2890 6023 252 20.2

256 26.21954315149687707776

The decomposition was performed by the bandwidth minimization approach.

To illustrate the computer time requirements of a more practical case, a higher frequency
simulation is performed for the same aircraft configuration. The wave frequency is increased
to 300 MHz, corresponding to a wavelength l=1 m and an aircraft length of 18l. The mesh
used contained 15182752 elements, 2553495 nodes and 17872347 edges and the computation
of 36 cycles of the incident wave required about 3 h on a CRAY T3D with 256 processors.

7. CONCLUSIONS

The paper has summarized work directed at providing a system, for computational engineering
in the aerospace industry, which fully exploits parallel computer platforms. To meet the
requirement for rapid turn-around times in application areas such as computational aerody-
namics and computational electromagnetics, a method for parallelizing explicit unstructured
mesh finite element based solution algorithms has been outlined. The approach that has been
followed is based upon a high level data abstraction, which reduces the problem of paralleliza-
tion to that of handling communication of data between edges connecting individual grid
partitions. For simulations involving large meshes, a parallel unstructured mesh generator and
a parallel visualization framework have also been introduced. To provide the analyst with a
general, flexible and easy to use computer environment from which problem definition,
application execution and post-processing can be undertaken, the developments have been
incorporated within a parallel simulation user environment. The performance of the complete
system has been demonstrated on realistic aerospace engineering problems, employing meshes
consisting of up to 16 million tetrahedral elements.
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10. K. Morgan, J. Peraire, J. Peiró and O. Hassan, ‘Unstructured grid methods for high speed compressible flows’,

in J.R. Whiteman (ed.), The Mathematics of Finite Elements and Applications—Highlights 1993, John Wiley &
Sons, Chichester, 1994, pp. 215–241.
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